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HCL: Hierarchical Consistency Learning for
Webly Supervised Fine-Grained Recognition

Hongbo Sun, Xiangteng He and Yuxin Peng

Abstract—Webly supervised fine-grained recognition aims to
distinguish subordinate categories (e.g., bird species) with freely
available web data. It has significant research and application
value for alleviating the costly professional manual annotations’
dependence in the fine-grained recognition task. Nevertheless,
there exists label noise in web data to decrease the model’s
recognition performance. Most existing methods attempt to select
clean data via loss analyses, which favors easy samples to hinder
mining subtle differences contained in hard samples. Inspired
by the intrinsic trait of consistent semantic predictions among
different hierarchies of clean samples in fine-grained recognition,
we propose a hierarchical consistency learning (HCL) approach
for detecting noisy samples and capturing multi-hierarchy dis-
criminative clues simultaneously. Specifically, our HCL approach
works in a coarse-to-fine order, which first explores the semantic
consistency between the image level and object level through
prediction distribution conformance analyses. The open-set noise
(i.e., samples irrelevant to any fine-grained subcategory) is thus
detected, and the visual object information is highlighted with
image-object contrastive learning. Then, the semantic consistency
between object-level and part-level prediction distributions is
utilized for detecting closed-set noise (i.e., samples mislabeled
as other fine-grained subcategories), and local discriminative
information is enhanced with object-part contrastive learning.
Extensive experiments and analyses on three widely-used webly
supervised fine-grained benchmark datasets demonstrate that the
proposed HCL approach can achieve new state-of-the-art. The
code is available at https://github.com/PKU-ICST-MIPL/HCL
TMM2023.

Index Terms—Webly supervised fine-grained recognition, hi-
erarchical consistency learning, open-set noise, closed-set noise

I. INTRODUCTION

F INE-GRAINED image recognition task is to identify
the exact subcategory of a given basic category, such

as classifying various bird species [1], car types [2], and
aircraft models [3], which has significant research value in
many real-life fields, such as biodiversity monitoring, intel-
ligent agriculture, and intelligent transport. The deep neural
network has brought remarkable progress in the fine-grained
recognition task [4] for its strong image representation ability,
which highly depends on a large amount of labeled training
data. However, labeling fine-grained training data is extremely
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Fig. 1. The introduction of three kinds of web data in the webly supervised
fine-grained recognition task. We propose a hierarchical consistency learning
approach to imitate the human recognition process in a coarse-to-fine order
for detecting noisy samples and mining discriminative clues simultaneously.

labor-intensive and time-consuming, which demands domain-
specific expert knowledge to distinguish the subtle differences
among subcategories for accurate annotation [5]. Thus, it be-
comes a severe obstacle to the generalization and practicability
of fine-grained recognition models.

To alleviate the above problem, researchers begin to resort
to the massive freely available web data to reduce reliance
on manual annotations and obtain more practical fine-grained
models [5]. Specifically, a series of webly supervised learning
methods [5]–[13] are proposed for fine-grained recognition,
which train the models with web images crawled from the
public websites via querying class names. Though web images
are cheap and easy to access, label noise exists due to errors
of automatic tagging or non-expert labeling, which affects
the model’s recognition performance [14]. The label noise
phenomenon is severe for fine-grained scenarios because of
the high labeling demand for domain-specific expertise. Thus,
webly supervised fine-grained recognition is very challenging
and worthy of thorough studies, which simultaneously faces
the problems of label noise and intrinsically subtle differences
among fine-grained subcategories.

The label noise in the webly supervised fine-grained recog-
nition task can be divided into two types, i.e., open-set label
noise and closed-set label noise [15]. As shown in Fig. 1, the
open-set label noise refers to the sample that does not belong
to any fine-grained subcategory, which is out of distribution.
For example, a “Map” image of the bird habitat is mislabeled
as the “California Gull” because of the text’s appearance in
the image. The closed-set label noise refers to the samples
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mislabeled as other subcategories. For example, the “Slaty
Backed Gull” image is mislabeled as “California Gull”, which
is an in-distribution noisy sample resulting from the extremely
small inter-class variance. The open-set and closed-set label
noise make the model confused or overfit during the training
stage, which weakens the model’s ability to recognize different
subcategories to a great extent.

To deal with the above label noise problems, loss correction
and sample selection are two leading solutions in webly
supervised fine-grained recognition methods. Specifically, the
loss correction methods attempt to modify the loss function
for improving robustness [16]–[18] and estimate the noise
label transition matrix [19], [20]. However, the loss correction
methods generally cannot perform well in intricacy scenarios
[21], and the transition matrix is hard to estimate for the
open-set noise in the real world. Sample selection methods
are intuitive to select clean samples for the model’s training.
Inspired by the observations that the deep learning models
tend to fit simple samples with commonality before fitting
hard samples [22], existing methods [5], [7], [8], [13], [23]
generally select small-loss training samples as the clean sam-
ples for training. Nevertheless, the above sample selection
methods based on loss analyses generally result in the dom-
ination of easy samples in the training process, affecting
discriminative information mining in fine-grained recognition.
Besides, the detected noisy samples are generally abandoned
directly, which ignores their comparative value in enhancing
the model’s recognition ability.

Inspired by the human recognition process of progressively
focusing on identifiable information for classification, we ob-
serve semantic consistency among different hierarchies when
predicting the semantic label of the clean sample, as shown
in Fig. 1. On the contrary, open-set noisy samples can be
detected when analyzing the semantic consistency between the
image-level and object-level prediction distributions because
the visual object in the sample does not belong to the labeled
subcategory. Closed-set noisy samples can be detected in a
similar way when analyzing the semantic consistency between
the object-level and part-level prediction distributions because
the latter can provide subtle yet important local discriminative
clues for predicting a specific subcategory, which differs from
the given wrong label. Given all the above analyses, we
propose a hierarchical consistency learning (HCL) approach
for webly supervised fine-grained recognition. The main con-
tributions can be summarized as follows:

• We propose to imitate the human progressive focusing
recognition mechanism and utilize semantic consistency
among different hierarchies to eliminate label noise as
well as mine discriminative information from multiple
hierarchies, which aims at simultaneously solving the two
critical problems in the webly supervised fine-grained
recognition task.

• Open-set noisy samples are detected by measuring the
semantic consistency between the image-level and object-
level prediction distributions. The model’s recognition
ability of the highlighted visual object is boosted via
image-object contrastive learning.

• Closed-set noisy samples are detected by calculating

the semantic consistency between the object-level and
part-level prediction distributions. Local discriminative
information is thoroughly mined for image classification
via object-part contrastive learning.

• Extensive comparison experiments on three real-
world webly supervised fine-grained benchmark datasets
demonstrate that the proposed HCL approach achieves
new state-of-the-art.

The rest of the paper is organized as follows: Section II
briefly reviews the related work on fine-grained image recog-
nition, webly supervised learning, and contrastive learning.
Section III elaborates on the proposed HCL approach, and
Section IV shows the experiments, analyses, and ablation
studies. Finally, Section V concludes the paper.

II. RELATED WORK

This section briefly reviews related works about fine-grained
image recognition, webly supervised learning, and contrastive
learning.

A. Fine-grained Image Recognition
Fine-grained image recognition aims to recognize various

subordinate categories belonging to the same basic category,
such as bird species, which generally faces the challenge
of large intra-class variance and small inter-class variance
[4]. Existing fine-grained image recognition methods can be
roughly summarized into two paradigms, i.e., (1) recognition
by discriminative regions localization and (2) recognition by
end-to-end feature learning. In the first paradigm [24]–[31],
discriminative regions are utilized explicitly or implicitly for
feature extraction and classification. Peng et al. [24] propose
a two-level attention mechanism to promote discriminative
regions localization, which does not need object bounding
boxes and part annotations. Song et al. [28] propose the
progressive mask attention model to discover discriminative
parts gradually. Sun et al. [31] propose introducing the object
structure information into the vision transformer to highlight
significant regions and boost discriminative feature learning.
Xu et al. [32] propose an ensemble learning transformer
to select desired tokens to extract features for classification
based on the attention map. In the second paradigm [33]–
[36], high-order features are generally designed as robust
image representation. Lin et al. [33] propose a bilinear con-
volution neural network framework to model local pairwise
feature interactions to generate robust feature representation
for classification. Tan et al. [36] devise a multi-scale selective
hierarchical biquadratic pooling approach to model intra-layer
and inter-layer feature interactions for extracting distinctive
features. In addition to the above two main kinds of methods,
Du et al. [37] propose to utilize the jigsaw puzzle generator
for data augmentation, which facilitates the model to learn
image information of different granularities. Chang et al. [38]
propose disentangling feature learning for better classification
performance with multi-granularity labels.

Though the above methods achieve promising fine-grained
recognition performance, they generally lack sufficient fine-
grained training data, which restricts their generalization abil-
ity and practicability to a large extent. Instead of the costly
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and limited training data annotated by experts, utilizing the
massive freely available web data for training fine-grained
models becomes an alternative solution, spawning a series of
webly supervised learning methods.

B. Webly Supervised Learning

Webly supervised learning methods utilize freely available
web data to train deep learning models, which are obtained
through retrieving search engines and social websites, such as
Google Image Search Engine1, Bing Image Search Engine2,
and Flickr3, with class names as keywords. However, noisy
samples in the web data generally exist due to errors of
automatic tagging or non-expert labeling, which decreases the
model’s performance [5]. Existing webly supervised learning
methods can be classified into two main types, i.e., the
loss correction methods [16]–[20], [39] and sample selection
methods [5], [7], [8], [12], [13], [23]. For the first loss
correction paradigm, Ghosh et al. [16] propose mean absolute
error loss, and Wang et al. [18] propose the symmetric cross-
entropy loss. PNP [12] proposes to predict the noise type
for input samples and adopts different training loss functions
accordingly. Though the above loss design can promote the
model’s robustness to some extent, they generally cannot
support intricate scenarios [21], such as indistinguishable
noisy samples. To address this problem, some works attempt
to model the label transition matrix for the noisy dataset.
Goldberger et al. [39] propose a noise adaption layer to act
as the transition matrix. Patrini et al. [19] propose to utilize
the loss function to estimate the transition matrix. However,
these methods are applicable to closed-set noisy scenarios,
which cannot solve the open-set noise in the web data. In
the second paradigm, sample selection methods generally
select the clean data from the noisy dataset for training the
model. Co-Teaching [7] trains two networks simultaneously
to select small-loss training samples for the peer network.
Yu et al. [23] propose the “update by disagreement” method
for training the model. Peer-learning [5] simultaneously trains
two networks to fetch clean data and direct each other in
the training stage. JoCoR [8] proposes a joint loss to select
clean samples for optimizing two networks. MS-DeJOR [13]
exploits the symmetric Kullback Leibler divergence between
the dual networks to improve the selection performance of
clean data for better fine-grained classification accuracy.

Despite obtaining promising recognizing performance, the
above sample selection methods generally tend to choose
small-loss samples to result in the domination of easy sam-
ples, which affects mining the subtle differences for fine-
grained classification. We propose to utilize the semantic
consistency among different hierarchies to simultaneously take
noisy sample detection and discriminative information mining
of multiple hierarchies into account for webly supervised fine-
grained recognition.

1https://images.google.com/
2https://www.bing.com/images/
3https://www.flickr.com/

C. Contrastive Learning

Contrastive learning aims to discover the pattern that is
specific to one set relative to others [40]. Recently, con-
trastive learning has been widely applied to self-supervised
representation learning [41]–[44]. SimCLR [43] proposes to
conduct contrastive learning via constructing the positive pair
by sampling two images from different transformations of the
same image and the negative pair by sampling two different
images. MoCo [42] trains a visual representation encoder by
matching an encoded query to a dictionary of encoded keys
with contrastive learning loss. Large-scale pre-trained vision-
language models, such as the well-known CLIP [44], usually
adopt contrastive learning to conduct the self-supervised pre-
training task with massive paired data, which has achieved
great success in general representation learning.

Inspired by the advantage of contrastive learning in en-
hancing feature representation, we propose multi-hierarchy
contrastive learning among clean samples and noisy samples to
boost the model’ discriminability of noise and representation
ability for image, object and part, which is beneficial for webly
supervised fine-grained recognition.

III. APPROACH

This section introduces the overall pipeline of the proposed
hierarchical consistency learning (HCL) approach and elabo-
rates on each component.

A. Overview

The whole pipeline of the proposed HCL approach is
shown in Fig. 2. Our HCL approach works in a coarse-
to-fine order to imitate the human recognition process for
detecting noisy samples and mining discriminative information
simultaneously. It comprises the coarse stage of detecting
open-set noisy samples and the fine stage of detecting closed-
set noisy samples. Finally, the clean samples are naturally
selected for training, and multi-hierarchy contrastive learning
is utilized to enhance the discriminability of features for fine-
grained recognition.

B. Open-set Noisy Samples Detection

In the fine-grained recognition task, different fine-grained
subcategories generally only have small variances in local
regions. Thus, the discriminative parts of the object play an
essential role in the final classification result, which means
that there exists inherent consistent semantic prediction among
the image, object, and part in the fine-grained clean sample.
Thus, clean samples, open-set noisy samples, and closed-set
noisy samples can be detected based on the characteristic.

Open-set noisy samples refer to the samples that are
mislabeled, where the visual objects do not belong to any
subcategory. Thus, the object-level semantic prediction for the
open-set noisy sample is generally different from the given
label. For example, in Fig. 1, a “Map” image of the birds’
habitat is mislabeled as the “California Gull”. A significant
variance exists between the object-level semantic prediction
of “Map” and the annotated image-level semantic label of
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Fig. 2. The pipeline of the proposed HCL approach. In the coarse stage, the open-set noisy samples are detected via semantic consistency calculation between
the image-level and object-level prediction distributions. In the fine stage, the closed-set noisy samples are detected via the semantic consistency calculation
between the object-level and part-level prediction distributions. Finally, clean samples are naturally selected for training, and multi-hierarchy contrastive
learning is adopted to enhance the features’ discriminability for fine-grained recognition.

“California Gull”. By contrast, clean samples have higher
consistency between the image-level and object-level semantic
predictions, which is thus utilized for detecting open-set noisy
samples in the coarse stage.

For extracting and exploiting the object information without
the bounding box annotation information, we first locate the
visual object extent in the original image in an unsupervised
way. Inspired by the observation that the high activation
response area of feature maps extracted by the convolutional
neural network (CNN) usually corresponds to significant ob-
ject regions for final classification decision [45], we utilize the
saliency map based on feature maps for locating the object
extent. Specifically, the image is first fed into the CNN such
as ResNet50 [46]. Feature maps are extracted from different
convolution layers for average calculation processing to obtain
the saliency map. As shown in Fig. 3, the saliency map
obtained from the deep convolution layer focuses on the whole
object in comparison with that obtained from the shallow
convolution layer. Thus, we adopt the saliency map obtained
from the last convolution layer for object localization. The
above process is formulated as follows. For a given image
I(x, y), the saliency map is calculated as follows:

S(x, y) =

N∑
i=1

ωiFMi(x, y), (1)

wi =
1

M
, (2)

where S(x, y) is the value of the saliency map in location
(x, y), FMi(x, y) denotes the activation value of ith feature

Input Images Conv5_3 Conv4_3 Conv3_3

(a)

(b)

Fig. 3. Saliency maps obtained from different convolution layers, i.e.,
“conv5 3”, “conv4 3”, and “conv3 3” of ResNet 50. The saliency map
obtained from the deep convolution layer focuses on the whole object.

map in the spatial location (x, y) extracted from I(x, y), wi

denotes the weight and M denotes the number of feature maps.
We find that simple average weighting can achieve promising
visual object localization results.

We emphasize and amplify the visual object in the image
to obtain the new object-focused image, as shown in Fig. 2,
which imitates the human’s gradual focus recognizing process.
We utilize the grid sampling method to amplify the visual
object while maintaining the surrounding information based
on the above saliency map. Concretely, for the image I(x, y),
the object amplification with grid sampling aims to construct a
mapping to scale up the high-saliency regions while suppress-
ing the low-saliency regions with two functions h(x, y) and
g(x, y). Then, the sampled image, i.e., the new object-focused
image, can be obtained via O(x, y) = I(h(x, y), g(x, y)). The
design of h(x, y) and g(x, y) is to map the image pixels
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proportionally according to the normalized weight of the
saliency map. An approximation solution is to obtain h(x, y)
and g(x, y) that satisfies:∫ h(x,y)

0

∫ g(x,y)

0

S(u, v)dudv = xy. (3)

Following [47], the solution is as follows:

h(x, y) =

∑
u,v S(u, v)k((u, v), (x, y))u∑
u,v S(u, v)k((u, v), (x, y))

, (4)

g(x, y) =

∑
u,v S(u, v)k((u, v), (x, y))v∑
u,v S(u, v)k((u, v), (x, y))

, (5)

where the k(·, ·) denotes the Gaussian distance kernel function.
It is utilized as regularization to avoid extreme cases, such as
all the pixel values approaching the same value. In this way,
the visual object in the image can be amplified based on the
extracted saliency map to obtain the new object-focused image.
More visualization results can be found in Fig. 4.

Feature maps extracted from different convolution layers
of the CNN contain information of different scales and
complement each other, as depicted in [48]. Thus, we first
extract the feature maps FMN−2, FMN−1, and FMN from
the last three convolution blocks considering the semantic
representation ability of high convolution layers, where N
denotes the number of convolution blocks in CNN. Then, the
new convolution blocks with two convolution layers are added
to further extract features to obtain the FN−2, FN−1, and
FN . Maxpooling operation is utilized to transform the above
feature maps into feature vectors fN−2, fN−1, and fN . To
get the comprehensive feature representation, we concatenate
the above feature vectors as fc:

fc = concat(fN−2, fN−1, fN ). (6)

By applying the classifiers consisting of two fully connected
layers for the four feature vectors separately, we accordingly
obtain the prediction vector pN−2, pN−1, pN , and pc, which
contain the semantic prediction distribution information. By
this means, we process the original image and object-focused
image with two separate sub-networks, as shown in Fig. 2.

Given the phenomenon that deep learning models tend to
fit simple samples owning commonality before learning hard
samples [13], [22], the classification loss is an important
indicator for detecting clean samples with consistent semantic
prediction distribution:

LI
cls1 =

N∑
i=N−2

CE(pIi , y) + 2× CE(pIc , y), (7)

LO
cls1 =

N∑
i=N−2

CE(pOi , y) + 2× CE(pOc , y), (8)

where LI
cls1 and LO

cls1 are corresponding classification losses
of the original image and object-focused image, CE(·) denotes
the cross entropy calculation, pIi and pIc belong to set predI

which denote the prediction vectors for the original image,
pOi and pOc belong to set predO which denote the prediction

vectors for the object-focused image, y is the given label.
The small-loss samples typically correspond to clean samples,
which have consistent semantics. Besides, we also utilize the
Jensen–Shannon (JS) divergence to calculate the semantic
consistency as follows:

Lcon1 =

N∑
i=N−2

JS(pIi ||pOi ) + 2× JS(pIc ||pOc ). (9)

JS(·) denotes calculating the distribution variance of predic-
tion vectors after normalization. A lower JS value represents a
lower distribution difference, i.e., higher semantic consistency.
Given all the above analyses, we propose the selection loss
function Ls1 for detecting open-set noisy samples in the coarse
stage as follows:

Ls1 = LI
cls1 + LO

cls1 + λLcon1, (10)

where λ is set to 10 to balance the loss items according to their
loss values observed in the experiments. Based on the Ls1, we
detect the large-loss samples as open-set noisy samples in the
training process.

C. Closed-set Noisy Samples Detection

The closed-set noisy samples refer to the samples that are
mislabeled as other subcategories, such as the “Slaty Backed
Gull” mislabeled as “California Gull” in Fig. 1, which are
generally caused by the fine-grained essence, i.e., small inter-
class variance. Many researches on fine-grained recognition
adopt the localization and recognition paradigm, which detects
and utilizes the information of salient regions for classification.
This is because key parts in salient regions contain essential
discriminative information for distinguishing various subcat-
egories. The semantic prediction information of key parts in
the closed-set noisy sample is generally inconsistent with that
obtained from the visual object. For example, as shown in the
third row of Fig. 1, the model’s predictions for the original
image and the visual object are “California Gull”. However,
when the model focuses on the local discriminative part, i.e.,
the beak shape and texture, it gets the prediction of “Slaty
Backed Gull”. Thus, there exists inconsistency between the
object-level prediction and part-level prediction. Based on the
above analyses, we propose to utilize the semantic consistency
between object-level and part-level prediction distributions to
detect the closed-set noisy samples in the fine stage, as shown
in Fig. 2.

As described in Section III-B, the saliency map has pre-
sented the significance distribution. Thus, we adopt the OTSU
algorithm [49] to binarize the saliency map and detect the
largest connected area as the part-focused image, as shown
in Fig. 2 and Fig. 4, which generally comprises key parts.
Inspired by the claim in [48] that training data of different
granularities can boost the model’s recognition ability on
local details, we adopt the jigsaw puzzle generator to shuffle
and recompose the jigsaw parts of the part-focused image.
By this means, the model is driven to focus on the key
parts and extract local discriminative features for fine-grained
recognition. Concretely, for preserving the completeness of
parts, the jigsaw number is empirically set as 2×2. The image
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Fig. 4. The visualization examples of the proposed HCL approach’s pipeline on three webly supervised fine-grained datasets. The visual object is amplified
and the key parts are focused on with the saliency map, which is utilized to conduct semantic consistency analyses for detecting noisy samples.

of recomposed jigsaw parts is input into the third sub-network
for feature extraction, and we adopt a similar way to Section
III-B to get the selection loss as follows:

LO
cls2 =

N∑
i=N−2

CE(pOi , y) + 2× CE(pOc , y), (11)

LP
cls2 =

N∑
i=N−2

CE(pPi , y) + 2× CE(pPc , y), (12)

Lcon2 =

N∑
i=N−2

JS(pOi ||pPi ) + 2× JS(pOc ||pPc ), (13)

Ls2 = LO
cls2 + LP

cls2 + λLcon2, (14)

where LO
cls2 and LP

cls2 are classification losses for the object-
focused image and part-focused image, respectively, CE(·)
denotes the cross entropy calculation, pOi and pOc belong to
set predO which denote the prediction vectors for the object-
focused image, pPi and pPc belong to set predP which denote
the prediction vectors for the part-focused image, y is the given
label, Lcon2 denotes their prediction distributions’ JS variance.
Based on the semantic consistency analyses of the object-level
and part-level prediction distributions, i.e., the Ls2, where λ
is also set to 10 empirically to balance the loss items, the
large-loss samples are treated as the closed-set noisy samples
during the training process.

D. Sample Selection and Model Training

For obtaining clean samples with correct labels, we first
select two small-loss sample sets according to Eq. 10 and
Eq. 14 with the drop rate γ, i.e., selecting the first 1 − γ
small-loss samples. Then, samples from the intersection set of
the above two selected sample sets are considered as clean
samples, while the others are considered as noisy ones, as

shown in Fig. 2. Inspired by the fact that the noisy samples also
contain the information of other subcategories, we propose
multi-hierarchy contrastive learning to improve the model’s
recognition ability.

Concretely, we conduct image-object and object-part con-
trastive learning, respectively. In image-object contrastive
learning, the holistic feature representations of the original im-
age and object-focused image, i.e., f

′I
c and f

′O
c , are obtained

in a similar way to fc in Eq. 6. Then, the contrastive learning
loss is constructed:

LCL1 = −E(log
exp(sim(f

′I
c , f

′O+
c )/τ)∑

exp(sim(f ′I
c , f ′O

c )/τ)
), (15)

where E(·) denotes the expectation calculation, sim(·) de-
notes the cosine similarity calculation, τ is the temperature
parameter which is set as 0.1 empirically, (f

′I
c , f

′O
c ) denotes

the image-object pair and (f
′I
c , f

′O+
c ) denotes the positive

pair which has the same label. It is noted that we abandon
the positive pairs which contain noisy samples to avoid their
disruption. Through the image-object contrastive learning,
the model’s ability to recognize visual objects of different
subcategories is improved.

During the training stage, we adopt the linear warm-up
strategy with the parameter TW as the number of warm-up
epochs. The training loss of the two sub-networks designed for
the original image and the object-focused image is calculated
as follows:

L1 = Ls1(xc) + α× LCL1(x), (16)

where x denotes input samples and xc denotes the selected
clean samples in x, α is a weight parameter. The model learns
both the fine-grained variances of different subcategories and
the semantic consistency between the image level and object
level with clean samples by optimizing the Ls1(xc). The
feature representation is enhanced with all the samples by
optimizing the contrastive learning loss LCL1(x).
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Then, we adopt the object-part contrastive learning to mine
the local subtle yet distinctive information for fine-grained
classification. The feature of the part-focused image is ob-
tained in a similar way to fc in Eq. 6 and divided into
four vectors, i.e., f

′Pn
c , by the maxpooling operation, which

correspond to jigsaw parts, as shown in Fig. 2. The object-part
contrastive learning loss is calculated as follows:

LCL2 = −E(
1

4

4∑
n=1

log
exp(sim(f

′O
c , f

′Pn+
c )/τ)∑

exp(sim(f ′O
c , f

′Pn
c )/τ)

), (17)

where (f
′O
c , f

′Pn
c ) denotes the object-part pair and

(f
′O
c , f

′Pn+
c ) denotes the positive pair with the same

label. The positive pairs that contain noisy samples are also
abandoned. Through the object-part contrastive learning, the
local distinguishable information of a specific subcategory is
mined and enhanced from both the object and part levels.
The training loss of two sub-networks designed for the
object-focused image and part-focused image is calculated as
follows:

L2 = Ls2(xc) + α× LCL2(x), (18)

where x and xc denote input samples and selected clean
samples, respectively, α is a weight parameter. Finally, the
total training loss is obtained as follows:

L = L1 + L2. (19)

Overall, noisy samples are filtered out and multi-hierarchy
information is learned by three different sub-networks in
the proposed HCL approach, which provide comprehensive
feature representations to focus on the image, object, and part,
respectively. They complement each other to achieve promis-
ing webly supervised fine-grained recognition performance.

E. Model Inference

In the test stage, the test image is input into the first
sub-network to obtain the prediction vector pIc . Then, the
visual object is emphasized and amplified to obtain the object-
focused image based on the extracted saliency map. The part-
focused image is obtained by cropping the salient image region
from the original image. The object-focused image and the
part-focused image are input into the second sub-network and
the third sub-network to get the prediction vectors pOc and pPc ,
respectively.

Finally, we merge the prediction vectors from the three sub-
networks by utilizing the following equation:

p = pIc + pOc + pPc , (20)

where p is the final prediction vector of the test image. Webly
supervised fine-grained recognition performance is boosted
by filtering out noisy samples, considering multi-hierarchy
information, and emphasizing distinguishable clues compre-
hensively in the proposed HCL approach.

IV. EXPERIMENTS

In this section, we conduct comparison experiments with
state-of-the-art methods on three webly supervised fine-
grained benchmark datasets to validate the effectiveness of
the proposed HCL approach. Meanwhile, ablation studies,
parameter experiments, backbone network experiments, and
visualization experiments are also conducted to verify the
importance of each proposed component.

A. Datasets and Evaluation Metric

Three popular webly supervised fine-grained datasets, i.e.,
Web-Bird, Web-Car, and Web-Aircraft proposed in [5], are
adopted in the experiments. Detailed descriptions of the three
datasets are as follows:

• Web-Bird is a fine-grained web bird dataset. It contains
200 bird subcategories. 18,388 images crawled from the
Internet are utilized for training. 5,794 clean, correctly
labeled test images from the standard fine-grained dataset
CUB-200-2011 [1] are utilized for test.

• Web-Car is a fine-grained web car dataset. It covers 196
car models. 21,448 images collected from the Internet are
utilized for training and 8,041 clean, correctly labeled test
images from the standard fine-grained dataset Stanford
Cars [2] are utilized for test.

• Web-Aircraft is a fine-grained web aircraft dataset. It
consists of 100 aircraft types. 13,503 images from the
Internet are utilized for training and 3,333 clean, correctly
labeled test images from the standard fine-grained dataset
FGVC-Aircraft [3] are utilized for test.

We adopt the widely used classification accuracy to evaluate
the performance of the proposed HCL approach and other
comparison methods.

B. Implementation Details

In this work, we select ResNet50 [46] as the backbone
network, and we only use the class labels of the images
without other annotations during the training phase. The three
CNNs in Fig. 2 are specifically designed to extract features and
get the predictions from the original image level, visual object
level, and local part level, which do not share parameters.
They are trained together through the proposed hierarchical
consistency learning. Input images are resized into the size of
550× 550 and randomly cropped into the size of 448× 448.
Data augmentation and label smoothing with a smooth value
of 0.1 are adopted in training. We adopt the stochastic gradient
descent (SGD) optimizer with momentum set as 0.9 and
weight decay set as 1e-5. We set the initial learning rate for the
parameters from the pre-trained ResNet50 backbone network
as 2e-4. As for the other newly added parameters, the initial
learning rate is set as 2e-3. The drop rate γ is set as 0.35, 0.25,
0.15 for Web-Bird, Web-Car, and Web-Aircraft, respectively.
The number of warm-up training epochs TW is set as 10. The
weight parameter α in Eq. 16 and Eq. 18 is set as 1. The total
number of training epochs is set as 100, and the batch size is
set as 30. The cosine annealing schedule is utilized to update
the learning rate. In the test phase, the images are resized into
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TABLE I
COMPARISON EXPERIMENTS WITH STATE-OF-THE-ART METHODS ON THREE WEBLY SUPERVISED FINE-GRAINED DATASETS, WEB-BIRD, WEB-CAR, AND
WEB-AIRCRAFT DATASETS. BOLD VALUE INDICATES THE BEST PERFORMANCE AND UNDERLINED VALUE INDICATES THE SUBOPTIMAL PERFORMANCE.

Methods Publications Backbone Accuracy(%)
Web-Bird Web-Car Web-Aircraft Average

Decoupling [6] NeurIPS 2017 ResNet50 71.6 79.4 75.9 75.6
Co-teaching [7] NeurIPS 2018 ResNet50 76.7 85.0 79.5 80.4
Co-teaching+ [23] ICML 2019 ResNet50 70.1 76.8 74.8 73.9
PENCIL [50] CVPR 2019 ResNet50 75.1 81.7 78.8 78.5
JoCoR [8] CVPR 2020 ResNet50 79.2 85.1 80.1 81.5
AFM [51] ECCV 2020 ResNet50 76.4 83.5 81.0 80.3
Self-adaptive [9] NeurIPS 2020 ResNet50 78.5 78.2 77.9 78.2
Peer-learning [5] ICCV 2021 B-CNN (VGG-16) 76.5 78.5 74.4 76.5
PLC [10] ICLR 2021 ResNet50 76.2 81.9 79.2 79.1
Jo-SRC [11] CVPR 2021 ResNet50 81.2 88.1 82.7 84.0
Liu et al. [15] TMM 2022 B-CNN (VGG-16) 78.5 82.2 75.4 78.7
Co-LDL [52] TMM 2022 ResNet50 81.0 89.2 83.8 84.7
PNP [12] CVPR 2022 ResNet50 81.9 90.1 85.5 85.8
CLAR-CRSSC [53] TMM 2023 ResNet50 82.9 88.6 82.8 84.8
MS-DeJOR [13] PR 2023 ResNet50 83.7 88.4 88.5 86.9
Our HCL method This paper ResNet50 86.1 91.6 92.5 90.1
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Fig. 5. The test accuracies of the baseline, MS-DeJOR, and ours on the Web-
Bird dataset. The test accuracy data of MS-DeJOR in the figure is obtained
by running its official code.

the size of 550× 550 and cropped into the size of 448× 448
from the center. All the experiments are implemented with
Pytorch on two NVIDIA A40 GPUs.

C. Comparison With State-of-the-art Methods

We compare the proposed HCL approach with state-of-the-
art (SOTA) methods on the above three webly supervised fine-
grained (WSFG) datasets, and the results are shown in Table
I and Fig. 5. We can observe that:

• The proposed HCL approach achieves better performance
than all the comparison methods on the three WSFG
datasets, achieving 86.1%, 91.6%, and 92.5% test accu-
racy on Web-Bird, Web-Car, and Web-Aircraft, respec-
tively. Compared with PNP [12], i.e., the representative
SOTA method of the loss function correction paradigm
introduced in Section II-B, our HCL approach achieves
4.2%, 1.5% and 7.0% performance gains on the above
three datasets. PNP proposes to predict noise probability

for each sample with the noise predictor network and
adopt distinct loss functions for different data types.
Though achieving promising performance, it ignores dis-
criminative information mining which is essential for
fine-grained classification. We attribute the performance
improvement brought by our HCL approach to utilizing
multi-hierarchy information, which emphasizes the visual
object and mines local discriminative clues. Besides, the
features extracted from the original, object-focused, and
part-focused images complement each other to achieve
better fine-grained recognition performance.

• Compared with the representative SOTA methods MS-
DeJOR [13] and CLAR-CRSSC [53] of the sample
selection paradigm introduced in Section II-B, our HCL
approach also achieves 2.4%, 3.2%, 4.0% and 3.2%,
3.0%, 9.7% performance gains on the three WSFG
datasets, respectively. We attribute the improvements to
the utilization of intrinsic semantic consistency among
the image-level, object-level, and part-level prediction
distributions in selecting clean samples. The noisy sam-
ples are thus eliminated and discriminative information
from multiple hierarchies is learned and enhanced by
contrastive learning, which is beneficial for improving
webly supervised fine-grained recognition performance.

• On the average test accuracy metric, the proposed HCL
approach can achieve 90.1% fine-grained classification
accuracy. It surpasses the suboptimal method by a margin
of 3.2% to verify the effectiveness and promising prac-
ticality of our proposed HCL approach in the real-world
webly supervised fine-grained recognition scenario. Fig.
5 shows the test accuracy trends of the baseline, MS-
DeJOR, and our proposed HCL approach with the in-
crease of training epochs on the Web-Bird dataset, which
presents the whole training process. The superiority of
our proposed HCL approach in classification accuracy
and performance stability can be observed in this figure.
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TABLE II
ABLATION STUDIES OF EACH COMPONENT IN THE PROPOSED HCL APPROACH ON THE WEB-BIRD, WEB-CAR, AND WEB-AIRCRAFT DATASETS. W/O

DENOTES WITHOUT, AND JS DENOTES JENSEN–SHANNON DISTRIBUTION VARIANCE CALCULATION, I.E., THE UTILIZATION OF EQ. 9 AND EQ. 13. BOLD
VALUE INDICATES THE BEST PERFORMANCE.

Methods Web-Bird(%) Web-Car(%) Web-Aircraft(%)
ResNet 50 78.8 86.1 87.9
ResNet 50 + multi-block features (Baseline) 81.2 87.7 89.3
Baseline + open-set noisy samples detection 85.2 91.1 91.4
Baseline + open-set & closed-set noisy samples detection (HCL) 86.1 91.6 92.5
HCL w/o JS 85.4 90.8 91.7

TABLE III
EXPERIMENTS ON DIFFERENT BACKBONE NETWORKS. BOLD VALUE

INDICATES THE BEST PERFORMANCE.

Methods Backbone Web-
Bird(%)

Web-
Car(%)

Web-
Aircraft(%)

ResNet50 - 78.8 86.1 87.9
ResNet101 - 79.4 86.9 88.9
ResNet152 - 80.4 87.8 89.3
Our HCL method ResNet50 86.1 91.6 92.5
Our HCL method ResNet101 86.7 92.2 93.0
Our HCL method ResNet152 87.2 92.4 93.6

Our proposed HCL approach, denoted by the red curve,
can perform better than MS-DeJOR, denoted by the green
curve, and the baseline method, denoted by the blue
curve, by distinct margins, which validates the effective-
ness of the proposed approach and its components.

D. Ablation Studies

In this section, we conduct ablation studies on the three
WSFG datasets to verify the effectiveness of each component
in the proposed HCL approach. The experimental results are
shown in Table II. We can observe that:

• Based on the standard ResNet 50, our baseline method
concatenates the features from different convolution
blocks to achieve the fine-grained classification accuracy
of 81.2%, which outperforms the pure ResNet 50 by
a margin of 2.4%. It verifies the effectiveness of the
concatenation of multi-block features. Through detecting
the open-set noisy samples in the coarse stage of our
HCL approach, the classification accuracy improves from
81.2% to 85.2%. The reasons are analyzed as follows.
In the coarse stage, the negative effect of the open-set
noisy samples on the fine-grained classification training
is first filtered out through the semantic consistency anal-
ysis between the image-level and object-level prediction
distributions. Then, the noisy samples are utilized in
image-object contrastive learning to enhance the model’s
recognition ability. When we further detect and utilize
the closed-set noisy samples in the fine stage, the classi-
fication accuracy improves from 85.2% to 86.1%, which
validates its effectiveness. The disruption caused by the
closed-set noisy samples is removed, and the model’s
feature representation ability is enhanced through object-
part contrastive learning, which mines and exploits local
discriminative clues.

• We also conduct ablation studies about the distribution
variance calculation in Eq. 9 and Eq. 13 on the three
webly supervised fine-grained datasets. The fine-grained
classification accuracy achieves consistent gains, such as
improving from 85.4% to 86.1% on the Web-Bird dataset,
which verifies its effectiveness. Through measuring the
distribution variance and combing with the typical se-
mantic label classification loss, the semantic consistency
can be more comprehensively utilized for filtering out
noisy samples accurately to obtain promising fine-grained
recognition performance.

E. Parameter Experiments

We conduct parameter experiments about contrastive learn-
ing loss weight α, the number of warm-up epochs TW , and
the drop rate γ on the Web-Bird dataset. We first fix the γ
as 0.25, TW as 10 to change the contrastive learning weight
α. Then, we fix the best α, set γ as 0.25 and change TW .
Finally, we fix the best α and TW to change the drop rate γ.
The experimental results are shown in Fig. 6, we can observe
that:

• The proposed HCL approach can achieve the best recog-
nition performance when α is set as 1, TW is set as
10, and γ is set as 0.35. The fine-grained classification
accuracy improves from 85.1% to 85.7% when raising
α from 0 to 1, which verifies the effectiveness of con-
trastive learning in our HCL approach. We attribute the
performance gain to the enhanced feature representation
by contrastive learning.

• Slight performance fluctuation happens with higher or
lower TW values, which shows our proposed approach is
relatively insensitive to the number of warm-up epochs.
The drop rate γ affects the classification accuracy because
it is an estimation of the ground-truth noise rate of
the Web-Bird dataset, which is different for each webly
supervised fine-grained dataset.

F. Experiments on Different Backbone Networks

To evaluate the performance of our proposed HCL method
with different vision backbone networks, we conduct compar-
ison experiments with ResNet50, ResNet101, and ResNet152
as the backbone network, respectively. Experimental results
are shown in TABLE III. We can observe that:

• Compared with the pure ResNet50 network, our HCL ap-
proach with ResNet50 as the backbone network achieves
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Fig. 6. Parameter experiments about contrastive learning loss weight α in Eq. 16 and Eq. 18, the number of warm-up epochs TW and the drop rate γ in
Section III-D on the Web-Bird dataset.

performance gains by 7.3%, 5.5%, and 4.6% on Web-
Bird, Web-Car and Web-Aircraft, respectively. The same
phenomenon can be observed when using other back-
bone networks. Thus, the effectiveness of our HCL ap-
proach on eliminating noisy samples and capturing multi-
hierarchy discriminative clues for webly supervised fine-
grained recognition is verified.

• By utilizing stronger vision backbone networks, our
proposed HCL approach achieves better classification
accuracy, which shows its extensibility and practicality
to various CNN backbone networks. For example, our
proposed HCL approach achieves 86.1%, 86.7%, and
87.2% classification accuracy on the Web-Bird dataset
when we utilize ResNet50, ResNet101, ResNet152 as
the backbone network, respectively. We attribute the
performance gains to the more accurate salient regions ex-
traction and more robust features brought by the stronger
vision backbone, which contributes to highlighting visual
object information and local discriminative information
as well as eliminating noisy samples for fine-grained
recognition. Overall, our proposed HCL approach can
be effectively combined with various CNN backbone
networks to capture multi-scale and multi-hierarchy in-
formation for webly supervised fine-grained recognition.

G. Visualization Experiments

We present the selected clean samples and detected noisy
samples by the proposed HCL approach on three WSFG
datasets in Fig. 7. The first four columns represent the selected
clean samples, the fifth and sixth columns represent the de-
tected open-set noisy samples, and the last column represents
the detected closed-set noisy samples. Each row represents
the sample selection on one specific subcategory. Samples
in the red rectangles represent the wrongly selected clean
samples. They comprise hard instances with subtle differences
and animated model images. (1) For the subtle difference,
the wrongly identified bird in the second row has a similar
shape to the correct one and the blue background may confuse
our proposed HCL model in color. The difference in the
wing should be further mined by eliminating the background
disruption to improve the recognition performance. (2) For
the animated model, the wrongly identified car in the fourth

row and the wrongly identified airplane in the sixth row are
animated model images which are similar to the real instances.
Our proposed HCL model is confused by the rare data format,
which should be augmented for training. Overall, the proposed
HCL approach can achieve promising performance in selecting
clean samples and detecting noisy samples, which verifies its
practicality in utilizing web data for fine-grained recognition.

H. Discussions

The limitations of our proposed HCL approach may rely on
two aspects: (1) Time consuming: the coarse-to-fine informa-
tion utilization manner of the proposed HCL approach takes a
slightly longer training time. (2) Hard to recognize rare data
format: the rare data, such as animated model images, confuses
our HCL model to be misrecognized as clean samples. We
will attempt the single-stage discriminative visual information
utilization by part-attention design and data augmentation
methods to improve the model’s performance while alleviating
the training time cost.

V. CONCLUSION

In this paper, we propose a hierarchical consistency learning
(HCL) approach for webly supervised fine-grained recogni-
tion, which imitates the human recognition process to detect
noisy samples and mine discriminative information simultane-
ously. In the fine-grained recognition scenario, there is inherent
semantic consistency among the image, object, and part of the
clean sample. The open-set noisy samples can be detected by
analyzing the semantic consistency between the image-level
and object-level prediction distributions while focusing on the
visual object in the image. The closed-set noisy samples can
be detected by calculating the semantic consistency between
the object-level and part-level prediction distributions while
mining local distinguishable clues. Multi-hierarchy discrim-
inative information is thus utilized and enhanced for fine-
grained recognition with multi-hierarchy contrastive learning.
Extensive experiments on three public datasets present the
superiority and practicality of the proposed HCL approach.

In the future, we will attempt to utilize the knowledge graph
that describes visual object attribute information to help detect
noisy samples, which is hopeful for improving the model’s
webly supervised fine-grained recognition performance.
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Fig. 7. The sample selection results of the proposed HCL approach on the three webly supervised fine-grained datasets. The selected clean samples for
training are on the left of the vertical dotted line. The detected noisy samples (including the first two columns of open-set noisy samples and the last column
of closed-set noisy samples) are on the right of the vertical dotted line. Samples in the red rectangles are the wrongly selected clean samples.
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